Skip to main content
Angreal Documentation
Toggle Dark/Light/Auto mode Toggle Dark/Light/Auto mode Toggle Dark/Light/Auto mode Back to homepage

Virtual Environment Integration (UV-Powered)

angreal.integrations.venv

Ultra-fast virtual environment and package management powered by UV (ultrafast Python package installer).

Overview

Angreal’s virtual environment integration uses UV to provide 10-50x performance improvements over traditional Python virtual environment tools. UV is automatically installed when first used, requiring no additional setup.

Performance Benefits:

  • Virtual environment creation: ~10x faster than venv
  • Package installation: ~50x faster than pip
  • Overall workflow: 3x faster execution times

Installation Requirements

UV is automatically installed when first used. No manual installation required.

Supported Platforms:

  • macOS (via curl)
  • Linux (via curl)
  • Windows (via PowerShell)

Functions

venv_required

Decorator that wraps a function in a virtual environment before execution. The virtual environment is activated before the function runs and deactivated afterward, ensuring packages installed in the venv are available for import.

@venv_required(path, requirements=None)

Parameters:

  • path (str): The path to the virtual environment (or where it should be created if it doesn’t exist)
  • requirements (str | List[str], optional): A string containing a single module, a list of module names, or a string containing a requirements file path. Defaults to None.

Example:

from angreal.integrations.venv import venv_required

@venv_required("/path/to/venv", requirements=["requests", "pandas"])
def process_data():
    # These imports work because the venv is activated
    import requests
    import pandas as pd

    # Your code here - runs in the activated virtual environment
    df = pd.DataFrame({'data': [1, 2, 3]})
    response = requests.get('https://api.example.com')

# After the function completes, the original environment is restored

Classes

VirtualEnv

Manage virtual environments using UV’s ultra-fast operations.

from angreal.integrations.venv import VirtualEnv

venv = VirtualEnv(path="/path/to/venv")

Constructor

VirtualEnv(path, python=None, requirements=None, now=True)

Parameters:

  • path (str | Path): The path to the virtual environment. Relative paths are resolved to absolute paths based on the current working directory.
  • python (str, optional): Python version to use (e.g., “3.11”, “3.12”)
  • requirements (str | List[str], optional): Requirements to install
  • now (bool, optional): Create environment immediately. Defaults to True.

Properties

exists

Check if the virtual environment exists.

@property
def exists(self) -> bool

Returns:

  • bool: True if the virtual environment exists, False otherwise
python_executable

Get the Python executable path for this virtual environment.

@property
def python_executable(self) -> Path

Returns:

  • Path: Path to the Python executable

Instance Methods

install_requirements

Install the requirements set during initialization.

def install_requirements(self) -> None

Raises:

  • TypeError: If requirements is not a file path, list, or string
  • RuntimeError: If UV fails to install the requirements
install

Install packages or requirements file.

def install(self, packages: Union[str, List[str], Path]) -> None

Parameters:

  • packages: Package names, requirements file path, or list of packages

Example:

# Install single package
venv.install("requests")

# Install multiple packages
venv.install(["pandas", "numpy", "matplotlib"])

# Install from requirements file
venv.install("requirements.txt")
activate

Activate the virtual environment in the current Python process.

def activate(self) -> None

This method modifies sys.prefix and sys.path to make the virtual environment’s packages available for import. Unlike shell activation, this affects only the current Python process.

Example:

venv = VirtualEnv("myenv", now=True)
venv.install("requests")

# Before activation, requests might not be importable
venv.activate()

# Now requests can be imported
import requests
response = requests.get("https://api.github.com")

# Remember to deactivate when done
venv.deactivate()

Raises:

  • RuntimeError: If the virtual environment does not exist
deactivate

Restore the original Python environment.

def deactivate(self) -> None

This method restores sys.prefix and sys.path to their original values before activation. Safe to call multiple times.

Example:

venv = VirtualEnv("myenv", now=True)
venv.activate()
# Use the virtual environment
venv.deactivate()  # Restore original environment

Context Manager Support

VirtualEnv supports the context manager protocol for automatic activation/deactivation:

with VirtualEnv("myenv", now=True) as venv:
    venv.install("numpy")

    # Virtual environment is activated here
    import numpy as np
    array = np.array([1, 2, 3])

# Virtual environment is automatically deactivated here

Static Methods

discover_available_pythons

Discover all Python installations on the system using UV.

@staticmethod
def discover_available_pythons() -> List[tuple[str, str]]

Returns:

  • List[tuple[str, str]]: List of (version, path) tuples for available Python installations

Example:

pythons = VirtualEnv.discover_available_pythons()
for version, path in pythons:
    print(f"Python {version}: {path}")
ensure_python

Ensure a specific Python version is available, installing if needed.

@staticmethod
def ensure_python(version: str) -> str

Parameters:

  • version (str): Python version to ensure (e.g., “3.11”, “3.12”)

Returns:

  • str: Path to the Python installation

Example:

python_path = VirtualEnv.ensure_python("3.11")
print(f"Python 3.11 available at: {python_path}")
version

Get UV version information.

@staticmethod
def version() -> str

Returns:

  • str: UV version string

Activation Behavior

How Activation Works

Unlike shell-based virtual environment activation (which modifies environment variables), the VirtualEnv activation methods work within the Python process by:

  1. Modifying sys.prefix to point to the virtual environment
  2. Updating sys.path to prioritize the virtual environment’s site-packages
  3. Preserving the original state for restoration during deactivation

Activation Notes

  • Process-Only: Activation only affects the current Python process, not subprocesses or the shell
  • Import Availability: After activation, packages installed in the venv become importable
  • Multiple Activations: Only one virtual environment can be active at a time. Activating a second venv will override the first
  • Thread Safety: Activation modifies global Python state (sys.prefix, sys.path) and is not thread-safe
  • Subprocess Behavior: Subprocesses will not inherit the activation - use the venv’s Python executable directly for subprocesses

Limitations

  • No Nested Activation: The current implementation does not support nested virtual environment activation. Deactivating always restores the original environment, not any previously activated environment
  • No Shell Integration: This activation does not affect your shell environment or terminal prompt
  • Module Caching: Python’s module import cache may retain modules from before activation. Use importlib.reload() if needed

Examples

Basic Usage

from angreal.integrations.venv import VirtualEnv

# Create virtual environment with Python 3.11
venv = VirtualEnv("/path/to/myenv", python="3.11")

# Check if it exists
if venv.exists:
    print("Virtual environment is ready")
    print(f"Python executable: {venv.python_executable}")

With Requirements

from angreal.integrations.venv import VirtualEnv

# Create venv with a list of packages
venv = VirtualEnv(
    "/path/to/myenv",
    python="3.11",
    requirements=["django", "pillow", "requests"]
)
venv.install_requirements()

# Or with a requirements file
venv = VirtualEnv(
    "/path/to/myenv",
    requirements="requirements.txt"
)
venv.install_requirements()

Using the Decorator

from angreal.integrations.venv import venv_required
import angreal

@angreal.command(name="analyze", about="Analyze data with pandas")
@venv_required(".venv", requirements=["pandas", "numpy"])
def analyze_command():
    """This command runs in an isolated virtual environment."""
    import pandas as pd
    import numpy as np

    # Your analysis code here
    data = pd.DataFrame(np.random.rand(100, 4))
    print(data.describe())

Python Version Management

from angreal.integrations.venv import VirtualEnv

# Discover available Python versions
pythons = VirtualEnv.discover_available_pythons()
print("Available Python installations:")
for version, path in pythons:
    print(f"  {version}: {path}")

# Ensure Python 3.12 is available
python_path = VirtualEnv.ensure_python("3.12")
print(f"Python 3.12 ready at: {python_path}")

# Create environment with specific Python version
venv = VirtualEnv("myproject-venv", python="3.12")

Manual Environment Management

from angreal.integrations.venv import VirtualEnv

# Create but don't activate immediately
venv = VirtualEnv("/path/to/env", now=False)

# Check and create if needed manually
if not venv.exists:
    venv._create()

# Install specific packages
venv.install(["flask", "sqlalchemy", "pytest"])

# Install from requirements file
venv.install("requirements.txt")

Programmatic Activation

from angreal.integrations.venv import VirtualEnv
import sys

# Create and set up environment
venv = VirtualEnv("data-science-env", now=True)
venv.install(["numpy", "pandas", "matplotlib"])

print(f"Before activation - sys.prefix: {sys.prefix}")

# Activate the environment
venv.activate()
print(f"After activation - sys.prefix: {sys.prefix}")

# Now we can import the installed packages
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Do some work with the packages
data = pd.DataFrame(np.random.randn(100, 4), columns=['A', 'B', 'C', 'D'])
data.plot()

# Deactivate when done
venv.deactivate()
print(f"After deactivation - sys.prefix: {sys.prefix}")

# Using context manager for automatic cleanup
with VirtualEnv("analysis-env", now=True) as venv:
    venv.install("scikit-learn")

    # This import works because we're in the activated environment
    from sklearn.datasets import load_iris
    iris = load_iris()
    print(f"Loaded {len(iris.data)} samples")

# Environment is automatically deactivated here

Performance Monitoring

from angreal.integrations.venv import VirtualEnv
import time

# Check UV version
print(f"Using UV version: {VirtualEnv.version()}")

# Time environment creation (typically <1 second)
start = time.time()
venv = VirtualEnv("fast-env", requirements=["requests"])
end = time.time()
print(f"Environment created in {end - start:.2f} seconds")

Performance Characteristics

Benchmark Comparisons

Operation Traditional Tool UV Improvement
Virtual Environment Creation ~5-10 seconds ~0.5-1 second 10x faster
Package Installation (10 packages) ~30-60 seconds ~1-2 seconds 50x faster
Requirements File (50 packages) ~2-5 minutes ~5-10 seconds 20-30x faster

Memory Usage

UV operations run as separate processes and clean up automatically, resulting in minimal memory overhead compared to in-process package management.

Error Handling

Common Errors

UV Installation Failed:

RuntimeError: UV installation failed

Solution: Check network connectivity or install UV manually

Python Version Not Found:

RuntimeError: Python 3.11 installed but not found

Solution: Specify exact version or use discover_available_pythons() to see available versions

Package Installation Failed:

RuntimeError: Failed to install packages: network timeout

Solution: Check network connectivity and package names

Best Practices

  1. Version Specification: Use specific Python versions (e.g., “3.11”) rather than “3” for consistency
  2. Error Handling: Wrap UV operations in try-catch blocks for production code
  3. Environment Isolation: Use separate environments for different projects
  4. Requirements Files: Prefer requirements.txt files for complex dependency specifications

Migration from Traditional Tools

From venv + pip

# Traditional approach
import subprocess
import sys

subprocess.run([sys.executable, "-m", "venv", "myenv"])
subprocess.run(["myenv/bin/pip", "install", "requests"])

# Angreal UV approach (much faster)
from angreal.integrations.venv import VirtualEnv

venv = VirtualEnv("myenv", requirements=["requests"])  # Done!

From virtualenv

# Traditional virtualenv
import virtualenv

virtualenv.create_environment("myenv")

# Angreal UV approach
from angreal.integrations.venv import VirtualEnv

venv = VirtualEnv("myenv", python="3.11")

UV Binary Management

Automatic Installation

UV is automatically installed when:

  1. Any VirtualEnv operation is performed
  2. The venv module is imported
  3. UV is not found in the system PATH

Manual UV Operations

While not typically needed, you can check UV status:

# This is handled automatically - shown for reference
from angreal import ensure_uv_installed, uv_version

# Ensure UV is available
ensure_uv_installed()

# Check version
version = uv_version()
print(f"UV version: {version}")

Architecture Notes

  • Binary Integration: Uses UV as external binary for maximum performance and stability
  • Subprocess Safety: All UV operations use secure subprocess calls with proper argument handling
  • Cross-Platform: Supports Windows, macOS, and Linux with platform-specific installation methods
  • Backward Compatibility: 100% compatible with existing venv API - drop-in replacement

See Also